EKR Sets for Large n and r

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Large (n, r)-arcs in PG(2, q)

An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in  $PG(2, q)$ is denoted by $m_r(2,q)$.  In this paper we present  a new $(184,12)$-arc in PG$(2,17),$  a new $(244,14)$-arc and a new $(267,15$)-arc in $PG(2,19).$

متن کامل

Factoring N=p^rq^s for Large r and s

Boneh et al. showed at Crypto 99 that moduli of the form N = pq can be factored in polynomial time when r ' log p. Their algorithm is based on Coppersmith’s technique for finding small roots of polynomial equations. In this paper we show that N = pq can also be factored in polynomial time when r or s is at least (log p); therefore we identify a new class of integers that can be efficiently fact...

متن کامل

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

$r$-fuzzy regular semi open sets in smooth topological spaces

In this paper, we introduce and study the concept of $r$-fuzzy regular semi open (closed) sets in smooth topological spaces. By using $r$-fuzzy regular semi open (closed) sets, we define a new fuzzy closure operator namely $r$-fuzzy regular semi interior (closure) operator. Also, we introduce fuzzy regular semi continuous and fuzzy regular semi irresolute mappings. Moreover, we investigate the ...

متن کامل

Finding large 3-free sets I: The small n case

There has been much work on the following question: given n, how large can a subset of {1, . . . , n} be that has no arithmetic progressions of length 3. We call such sets 3-free. Most of the work has been asymptotic. In this paper we sketch applications of large 3-free sets, present techniques to find large 3-free sets of {1, . . . , n} for n ≤ 250, and give empirical results obtained by codin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2015

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-015-1602-x